9.2 用样本估计总体9.2.1总体取值规律的估计9.2.2总体百分位数的估计
探究1 频率分布直方图思考1我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了减少水资源的浪费,计划对居民生活用水费用实施阶梯式水价制度,即确定一户居民月均用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望确定一个比较合理的标准,以使大部分居民用户的水费支出不受影响,你认为需要做哪些工作?①全面调查(普查):时间、经费允许。②抽样调查
9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.02.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2.0 10.52.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.92.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.4 22.43.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.022.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.95.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.75.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.35.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.87.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6如果将这组数据从小到大排序,容易发现,这组数据的最小值是1.3t,最大值是28.0t,其他在1.3t至28.0t之间.如果想得到更多的信息,可以如何做
思考:如何画频率分布直方图1.求极差: 极差为一组数据中最大值与最小值的差.样本观测数据的最小值是1.3t,最大值是28.0t,极差为28.0-1.3=26.7这说明样本观测数据的变化范围是26.7t.
2.决定组距与组数:数据分组的组数与数据的个数有关,一般数据的个数越多,所分组数也越多,当样本容量不超过100时,常分成5~12组.为方便起见,一般取等长组距,并且组距应力求“取整”分组时可以先确定组距,也可以先确定组数,如果我们取所有组距为3,则 即可将数据分为9组
3.将数据分组:由于组距为3,9个组距的长度超过极差,我们可以使第一组的左端点略小于数据中的最小值,最后一组的右端点略大于数据中的最大值,例如,可以取区间为[1.2,28.2],按如下方式把样本观测数据以组距3分为9组:[1.2,4.2),[4.2,7.2),...,[25.2,28.2].4.列频率分布表计算各小组的频率,例如第一小组的频率作出频率分布表
4.列频率分布表计算各小组的频率,作出频率分布表
月均用水量/t0.020.040.060.080.101.24.27.210.213.216.219.222.225.228.2 00.12频率/组距小长方形的面积=?5.画频率分布直方图根据频率分布表画出如图所示的频率分布直方图
思考: 观察频率分布表和频率分布直方图,你觉得这组数据中蕴含了哪些有用的信息?你能从图表中发现居民用户月均用水量的哪些分布规律?
(2)从频率分布直方图能直观的表明数据分布的形状和总体趋势.从上图容易看出,居民用户月均用水量的样本观测数据的分布是不对称的,图形的左边高、右边低,右边有一个较长的“尾巴”,这表明大部分居民用户的月均用水量集中在一个较低值区域,尤其在区间[1.2,7.2)最为集中,少数居民用户的月均用水量偏多,而且随着月均用水量的增加,居民用户数呈现降低趋势.(1)从频率分布表中可以清楚地看出,样本观测数据落在各个小组的比例大小,例如,月均用水量在区间[4.2,7.2)内的居民用户最多,在区间[1.2,4.2)内的次之,而月均用水量超过16.2的各区间内数据所占比例较小,等等.
思考:分别以3和27为组数,对数据进行等距分组,画出100户居民用户月均用水量的频率分市直方图.观察图形,你发现不同的组数对于直方图呈现数据分市规律有什么影响?
例1 某地区为了了解知识分子的年龄结构,随机抽样50名,其年龄分别如下: 42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表; (2)画出频率分布直方图;(3)估计年龄在32~52岁的知识分子所占的比例约是多少.
(1)极差为67-28=39, 取组距为5,分为8组. 分 组 频数 频率 [27,32) 3 0.06 [32,37) 3 0.06 [37,42) 8 0.16 [42,47) 16 0.32 [47,52) 8 0.16 [52,57) 5 0.10 [57,62) 4 0.08 [62,67] 4 0.08 合 计 50 1.00样本频率分布表:
(2)样本频率分布直方图:年龄0.060.050.040.030.020.0127 32 37 42 47 52 57 62 67频率组距O(3)因为0.06+0.16+0.32+0.16=0.7,故年龄在32~52岁的知识分子约占70%.
【
2023-2024学年高中数学人教A版必修第二册 9.2.1总体取值规律的估计9.2.2总体百分位数的估计(课件)