四川省
达州市普通高中
2022
届第一次诊断性测试
数学试题(文科)
一、选择题:本题共
12
小题,每小题
5
分,共
60
分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1
.设集合
,则
(
)
A
.
B
.
C
.
D
.
2
.复数
z
满足
,则
(
)
A
.
2
B
.
C
.
3 D
.
3
.随着消费者环保意识的增强,新能源汽车得到了消费者的青睐.右图是某品牌的新能源汽车在今年的前
8
个月的销量(单位:辆)情况,以下描述错误的是(
)
A
.这
8
个月销量的极差是
3258 B
.这
8
个月销量的中位数是
3194
C
.这
8
个月中
2
月份的销量最低
D
.这
8
个月中销量比前一个月增长最多的是
4
月份
4
.设
,则“
”是“
”的(
)
A
.充要条件
B
.充分条件但不是必要条件
C
.既不是充分条件也不是必要条件
D
.必要条件但不是充分条件
5
.双曲线
的左顶点为
A
,右焦点
.若直线
与该双曲线交于
B
,
C
两点,
为等腰直角三角形,则该双曲线离心率为(
)
A
.
2
B
.
C
.
D
.
3
6
.住在同一个小区的两位同学在暑假里报名参加小区的志愿者服务,该小区共有三个志愿者服务点,
若随机分配,则两位同学刚好分到同一个志愿者服务点的概率是(
)
A
.
B
.
C
.
D
.
7
.已知函数
,当
时,恒有
成立,则
(
)
A
.
3
B
.
C
.
4
D
.
8
.天文学中,用视星等表示观测者用肉眼所看到的星体亮度,用绝对星等反映星体的真实亮度.星体的视星等
m
,绝对星等
M
,距地球的距离
d
有关系式
(
为常数).若甲星体视星等为
1.25
,绝对星等为
,距地球距离
;乙星体视星等为
1.15
,绝对星等为
1.72
,距地球距离
,则
(
)
A
.
B
.
C
.
D
.
9
.
中,
,则
边上的高为(
)
A
.
B
.
C
.
D
.
10
.已知某简谐振动的振动方程是
,该方程的部分图象如图.经测量,振幅为
.图中的最高点
D
与最低点
E
,
F
为等腰三角形的顶点,则
(
)
A
.
B
.
C
.
D
.
11
.某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥所有顶点都在半径为
3
的球
O
上,当该四棱锥的体积最大时,底面正方形所在平面截球
O
的截面面积是(
)
A
.
B
.
C
.
D
.
12
.已知函数
的值域为
,则
(
)
A
.
B
.
C
.
或
D
.
或
二、填空题:本题共
4
小题,每小题
5
分,共
20
分.
13
.己知向量
,若
与
垂直,则实数
_________
.
14
.函数
在点
处的切线方程是
__________
.
15
.
设直线
交椭圆
于
A
,
B
两点,将
x
轴下方半平面沿着
x
轴翻折与
x
轴上方半平面成直二面角,则
的取值范围是
_________
.
16
.定义在
R
上的函数
满足
,当
时,
.设
在
上最小值为
,则
_________
.
三、解答题:共
70
分.解答应写出文字说明、证明过程或演算步骤.第
17
~
21
题为必考题,每个试题考生都必须作答.第
22
、
23
题为选考题,考生根据要求作答.
(一)必考题:共
60
分.
17
.(
12
分)
某跨国企业,在国内和国外分别建立生产基地生产同一种产品,现对库存的产品根据产地按分层抽样随机抽取
100
件产品作为样本进行检测,所抽取样本中有
55
件产自国内,其中
33
件为优品,其余为良品;所抽取样本中国外的产品有
35
件为优品,其余为良品.已知国内库存有产品
660
件.
(
1
)国外库存一共有多少件产品?
(
2
)完成下面的
列联表,并根据列联表,判断是否有
95%
的把握认为产品的优良与产地有关?
国内
国外
合计
优品
良品
合计
附:
0.050
0.010
0.001
3.841
6.635
10.828
18
.(
12
分)
如图,
,
D
为
中点,
平面
,
,
,
.
(
1
)证明:
平面
;
(
2
)求点
C
到平面
的距离.
19
.(
12
分)
数列
和
满足
.
(
1
)求数列
的通项公式;
(
2
)若
,求数列
的前
n
项和
.
20
.(
12
分)
过定点
的动圆始终与直线
相切.
(
1
)求动圆圆心的轨迹
C
的方程;
(
2
)动点
A
在直线
l
上,过点
A
作曲线
C
的两条切线分别交
x
轴于
B
,
D
两点,当
的面积是
时,求点
A
坐标.
21
.(
12
分)
己知函数
.
(
1
)若
,求函数
在
上的零点个数;
(
2
)当
时都有
,求实数
a
的取值范围.
(二)选考题:共
10
分.请考生在第
22
、
23
题中任选一题作答,如果多做,则按所做的第一题计分.
22
.【选修
4-4
:坐标系与参数方程】(
10
分)
直角坐标系
中,曲线
的参数方程为
(
为参数),以
O
为极点,
x
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(
1
)求
的普通方程和
的直角坐标方程;
(
2
)若
平分曲线
,求
的取值范围.
23
.【选修
4-5
:不等式选讲】(
10
分)
已知函数
的最小值为
n
.
(
1
)求
n
的值;
(
2
免费下载四川省达州市2021-2022学年高三第一次诊断性测试数学(文)试题(原卷全解析版)