文库 高中同步资源 高中数学 同步备课

2023-2024学年高中数学人教A版必修第二册 10.1.2事件的关系和运算(课件)

2024 课件 人教A版 全国 计数原理与概率统计 必修第二册 高一下 PPTX   9页   下载3425   2024-02-02   浏览56   收藏809   点赞702   评分-   免费文档
温馨提示:当前文档最多只能预览 3 页,若文档总页数超出了 2 页,请下载原文档以浏览全部内容。
2023-2024学年高中数学人教A版必修第二册  10.1.2事件的关系和运算(课件) 第1页
2023-2024学年高中数学人教A版必修第二册  10.1.2事件的关系和运算(课件) 第2页
剩余6页未读, 下载浏览全部
10.1.2 事件的关系和运算 例如:Ci=“点数为i”,i=1,2,3,4,5,6;D1=“点数不大于3”;D2=“点数大于3”;E1=“点数为1或2”;E2=“点数为2或3”;F=“点数为偶数”;G=“点数为奇数”;引例:在掷骰子试验中,观察骰子朝上面的点数,可以定义许多随机事件 思考1:如何用集合的形式表示这些事件? 思考2:借助集合与集合的关系和运算,你能发现事件C1和G之间的联系吗?用集合的形式表示事件C1=“点数为1”和事件G=“点数为奇数”,它们分别是C1={1}和G={1,3,5}.显然,如果事件C1发生,那么事件G一定发生,事件之间的这种关系用集合的形式表示,就是{1}⊆{1,3,5},即C1⊆G. 这时我们说事件G包含事件C1. 思考3:借助集合与集合的关系和运算,你能发现事件D1、E1与E2之间的联系吗?  一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,或者在事件B中,我们称这个事件为事件A与事件B的并事件(或和事件),记作AUB(或A+B).可以用图中的绿色区域和黄色区域表示这个并事件. 思考4:借助集合与集合的关系和运算,你能发现事件C2、E1与E2之间的联系吗? 分析可以发现,事件E1和E2同时发生,相当于C2发生,事件之间的这种关系用集合的形式表示,就是 即 我们称事件C2为事件E1和E2的交事件 一般地,事件A与事件B同时发生,这样的一个事件中的样本点既在事件A中,也在事件B中,我们称这样的一个事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).蓝色区域表示交事件 用集合的形式表示事件C3=“点数为3”和事件C4=“点数为4”. 它们分别是C3={3},C4={4}.显然,事件C3与事件C4不可能同时发生,用集合的形式表示这种关系,就是{3}∩{4}=Φ,即C3∩ C4=Φ,这时我们称事件C3与事件C4互斥.思考5:借助集合与集合的关系和运算,你能发现事件C3 和C4之间的关系吗?一般地,如果事件A与事件B不能同时发生,也就是说A∩ B是一个不可能事件,即A∩B=Φ,则称事件A与事件B互斥(或互不相容). 思考6:借助集合与集合的关系和运算,你能发现事件F和G之间的关系吗?用集合的形式表示事件F=“点数为偶数”、事件G= “点数为奇数”,它们分别是F={2,4,6},G={1,3,5}.在任何一次试验中,事件F与事件G两者只能发生其中之一,而且也必然发生其中之一.事件之间的这种关系,用集合的形式可以表示为{2,4,6}∪{1,3,5}={1,2,3,4,5,6},即F∪G=Ω,且{2,4,6}∩(1,3,5}=Φ,即F∩G= Φ.此时我们称事件F与事件G互为对立事件.事件D1与D2也有这种关系. 一般地,如果事件A和事件B在任何一次试验中有且仅有一个发生,即 A∪B=Ω,且A∩B=Φ,那么称事件A与事件B互为对立.事件A的对立事件记为 ,可以用图表示为.其含义是:事件A与 事件B在任何一次试验中有且仅有一个发生. 例1 如图,由甲、乙两个元件组成一个并联电路,每个元件可能正常或失效.设事件A=“甲元件正常”,B=“乙元件正常”.(1)写出表示两个元件工作状态的样本空间;(2)用集合的形式表示事件A,B以及它们的对立事件;(3)用集合的形式表示事件A∪B和事件A∩B,并说明它们的含义及关系.分析:注意到试验由甲、乙两个元件的状态组成,所以可以用数组(x1,x2)表示样本点.这样,确定事件A,B所包含的样本点时,不仅要考虑甲元件的状态,还要考虑乙元件的状态. 解:(1)用x1,x2分别表示甲、乙两个元件的状态,则可以用(x1,x2)表示这个并联电路的状态,以1表示元件正常,0表示元件失效,则样本空间为Ω={(0,0),(0,1),(1,0),(1,1)}.(2)用集合的形式表示事件A,B以及它们的对立事件;A={(1,0),(1,1)}, B={(0,1),(1,1)}, ={(0,0),(0,1)}, ={(0,0),(1,0)}. (3)用x1,x2分别表示甲、乙两个元件的状态,则可以用(x1,x2)表示这个并联电路的状态,以1表示元件正常,0表示元件失效.A∪B={(0,1),(1,0),(1,1)}, ∩ ={(0,0)};A∪B表示电路工作正常, ∩ 表示电路工作不正常;A∪B和 ∩ 互为对立事件. 类题通法判断事件是否互斥的两个步骤第一步,确定每个事件包含的结果;第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.判断事件是否对立的两个步骤第一步,判断是互斥事件;第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立. 例2一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件R1=“第一次摸到红球”,R2=“第二次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两个球颜色相同”,N=“两个球颜色不同”(1)用集合的形式分别写出试验的样本空间以及上述各事件;(2)事件R与R1,R与G,M与N之间各有什么关系?(3)事件R与事件G的并事件与事件M有什么关系?事件R1与事件R2的交事件与事件R有什么关系? (1) 用数组(x1,x2)表示可能的结果,x1是第一次摸到的球的标号,x2是第二次摸到的球的标号Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)}R2={(2,1),(3,1),(4,1),(1,2),(3,2),(4,2)}R={(1,2),(
2023-2024学年高中数学人教A版必修第二册 10.1.2事件的关系和运算(课件)
下载提示

恭喜您下载成功!您的下载是我们践行以客户为中心价值观,精益求精、永不止步的不竭动力。


这个人很懒,什么都没留下
未认证用户 查看用户
该文档于 上传
QQ
微信
扫一扫
客服