文库 高中同步资源 高中数学 考试试卷

北京市海淀区清华附中2020-2021学年高二(下)期中考试数学试题(原卷全解析版)免费下载

北京 期中 2021 高二下 DOCX   25页   下载339   2024-03-18   浏览50   收藏906   点赞553   评分-   免费文档
温馨提示:当前文档最多只能预览 3 页,若文档总页数超出了 2 页,请下载原文档以浏览全部内容。
北京市海淀区清华附中2020-2021学年高二(下)期中考试数学试题(原卷全解析版)免费下载 第1页
北京市海淀区清华附中2020-2021学年高二(下)期中考试数学试题(原卷全解析版)免费下载 第2页
剩余22页未读, 下载浏览全部
北京市海淀区清华附中 2020-2021 学年高二(下)期中考试 数 学 一、选择题(共 10 小题;共 40 分) 1 .( 4 分)已知集合 , ,则    A . B . C . , D . , 2 .( 4 分)已知等比数列 的各项均为正数,且 ,则    A . B . 5 C . 10 D . 15 3 .( 4 分)已知 为偶函数,其局部图象如图所示,那么    A . ( 2 ) B . ( 2 ) C . ( 2 ) D . ( 2 ) 4 .( 4 分)已知等差数列 ,则 “ ” 是 “ 数列 为单调递增数列 ” 的    A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 5 .( 4 分)从 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 中不放回地依次取 2 个数,事件 “ 第一次取到的是奇数 ” , “ 第二次取到的是奇数 ” ,则    A . B . C . D . 6 .( 4 分)设变量 与 有如表五组数据:由散点图可知, 与 之间有较好的线性相关关系,已知其线性回归方程是 ,则    1 2 3 4 5 4.5 4 2 3 2.5 A . 4.4 B . 4.5 C . 4.6 D . 4.7 7 .( 4 分)设抛物线 的焦点为 , 为坐标原点, 是 上一点.若 ,则    A . B . 5 C . D . 8 .( 4 分)函数 , 的部分图象如图所示,则    A . B . C . D . 9 .( 4 分)某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为    A . 24 B . 36 C . 42 D . 48 10 .( 4 分)斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形 中作边长为 1 的正方形 ,以 为圆心, 长为半径作圆弧 ;然后在矩形 中作正方形 ,以 为圆心, 长为半径作圆弧 ; ;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧 , , 的长度分别为 , , ,则    A . B . C . D . 二、填空题(共 5 小题;共 25 分) 11 .( 5 分)设复数 满足 , 为虚数单位,则    . 12 .( 5 分)在 展开式中,常数项为    .(用数值表示) 13 .( 5 分)某学生为了研究高二年级同学的体质健康成绩与学习成绩的关系,从高二年级同学中随机抽取 30 人,统计其体质健康成绩和学习成绩,得到 列联表如表: 体质健康成绩高 体质健康成绩低 总计 学习成绩高 17 2 19 学习成绩低 3 8 11 总计 20 10 30 有    的把握认为学生的体质健康成绩高低与学习成绩高低有关. 附: . 0.100 0.050 0.010 0.001 2.706 3.841 6.635 10.828 14 .( 5 分)如图,在直三棱柱 中, , ,点 、 、 分别是 、 、 的中点,点 是 上的动点.若 ,则线段 长度为    . 15 .( 5 分)从 到 通信,网络速度提升了 40 倍.其中香农公式 是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率 取决于信道带宽 、信道内信号的平均功率 、信道内部的高斯噪声功率 的大小,其中 叫做信噪比.根据香农公式,以下说法正确的是    . ① 若不改变信噪比 ,而将信道带宽 增加 倍,则 增加 倍. ② 若不改变信道带宽 和信道内信号的平均功率 ,而将高斯噪声功率 降低为原来的一半,则 增加一倍. ③ 若不改变带宽 ,而将信噪比 从 15 提升至 127 , 增加了 . ④ 若不改变带宽 ,要使得 增加一倍,则需要将信噪比 从 63 提升至 1023 . 三、解答题(共 6 小题;共 85 分) 16 .在 中, , ,且 ,再从条件 ① 、条件 ② 中选择一个作为已知,条件 ① : ;条件 ② : .求: ( Ⅰ ) 的值; ( Ⅱ ) 的面积. 17 .为了解果园某种水果产量情况,随机抽取 100 个水果测量质量,样本数据分组为 , , , , , , , , , , , (单位:克),其频率分布直方图如图所示: ( Ⅰ )用分层抽样的方法从样本里质量在 , , , 的水果中抽取 6 个,求质量在 , 的水果数量; ( Ⅱ )从( Ⅰ )中得到的 6 个水果中随机抽取 3 个,记 为质量在 , 的水果数量,求 的分布列和数学期望; ( Ⅲ )果园现有该种水果约 20000 个,其等级规格及销售价格如表所示, 质量 (单位:克) 等级规格 二等 一等 特等 价格(元 个) 4 7 10 试估计果园该种水果的销售收入. 18 .在等差数列 中, , . ( Ⅰ )求数列 的通项公式; ( Ⅱ )若数列 是首项为 1 ,公比为 的等比数列,求 的前 项和 . 19 .已知:函数 . ( Ⅰ )若 ,求曲线 在点 , 处的切线方程; ( Ⅱ )求函数 的单调区间; ( Ⅲ ) 在区间 , 上的满足 ,求 的取值范围. 20 .已知椭圆 . ( Ⅰ )求椭圆 的离心率和长轴长. ( Ⅱ )已知直线 与椭圆 有两个不同的交点 , , 为 轴上一点.是否存在实数 ,使得 是以点 为直角顶点的等腰直角三角形?若存在,求出 的值及点 的坐标;若不存在,说明理由. 21 .定义数列 如下: ,对任意的正整数 ,有 . ( Ⅰ )写出 , , , 的值; ( Ⅱ )证明:对任意的正整数 ,都有 ; ( Ⅲ )是否每一个非负整数都在数列 出现?证明你的结论. 2021 北京清华附中高二(下)期中数学 参考答
北京市海淀区清华附中2020-2021学年高二(下)期中考试数学试题(原卷全解析版)免费下载
下载提示

恭喜您下载成功!您的下载是我们践行以客户为中心价值观,精益求精、永不止步的不竭动力。


这个人很懒,什么都没留下
未认证用户 查看用户
该文档于 上传
QQ
微信
扫一扫
客服