2022-2023学年天津市部分重点高中高一下学期期中考试 数学
一、选择题(本题共9小题,每小题4分,共36分)
1.
已知
,其中
为虚数单位,则
(
)
A
.
B
.
5
C
.
2
D
.
2.
已知向量
若
则
(
)
A
.
B
.
C
.
D
.
3.
已知
是夹角为
60°
的单位向量,则
(
)
A
.
7
B
.
13
C
.
D
.
4.
已知
a
、
b
为两条不同的直线,
为两个不同的平面,则下列说法正确的是(
)
A
.若
,
,则
B
.若
,
,
,则
C
.若
,
,
,则
D
.若
,
,则
5.
在△
ABC
中,已知
,那么△
ABC
一定是(
)
A
.等腰直角三角形
B
.直角三角形
C
.等腰三角形
D
.等边三角形
6.
已知
,若
与
的夹角为
,则
在
的投影向量为(
)
A
.
3
B
.
C
.
D
.
7.
在
中,内角
A
,
B
,
C
所对的边为
a
,
b
,
c
,若
,则角
的大小为
( )
A.
B.
C.
D.
8.
若一个正方体的八个顶点都在同一个球面,则正方体与这个球的表面积之比为(
)
A
.
B
.
C
.
D
.
9.
如图,在
中,
一点,且满足
的值为(
)
A
.
B
.
C
.
D
.
二、填空题(本题共6小题,每小题4分,共24分)
10.
若复数
z
满足
,则
z
的虚部是
______.
11
.
已知圆锥的底面半径是
2
,它的侧面展开图是一个半圆,则此圆锥的体积为
.
12
.
若
一个圆柱和一个圆锥的底面周长之比为
,圆柱的体积是圆锥体积的
2
倍,则圆柱的高与圆锥的高的比为
___________.
13
.
在
中,
a
,
b
,
c
分别为内角
A
,
B
,
C
所对的边,若
,
,则
的面积是
.
14.
一艘轮船沿北偏东
28°
方向,以
18
海里
/
时的速度沿直线航行,一座灯塔原来在轮船的南偏东
32°
方向,经过
10
分钟的航行,此时轮船与灯塔的距离为
海里,则灯塔与轮船原来的距离为
.
15
.
如图,在平面四边形
中,
,
.
若点
为边
的动点,则
的取值范围为
三、解答题(本大题共
4
小题,共
60
分)
16.
(本小题满分
15
分)
已知
.
(1)
求
与
夹角的余弦值;
(2)
若
,求实数
λ
的值.
(3)
若
,
且
、
、
三点共线
,
求
的值
.
17.
(本小题满分
15
分)
在非等腰
中,
a
,
b
,
c
分别是三个内角
A
,
B
,
C
的对边,且
,
,
.
(1)
求
的值;
(2)
求
的周长;
(3)
求
的值
.
18.
(本小题满分
15
分)
如图:在正方体
中
AB=2,
为
的中点
.
(1)
求三棱锥
N-ACD
的体积;
(2)
求证:
平面
;
(3)
若
为
的中点,求证:平面
平面
.
19.
(本小题满分
1
5
分)
在
中,角
的对边分别为
,已知
.
(1)
求角
的大小;
(2)
若
为锐角三角形,求
的取值范围
.
2023~2023学年度第二学期期中重点校联考
高一
数学参考答案
一、选择题
1-5
ADCDC
6-9 BBAB
二、填空题
10
.
4
11
.
12
.
13
.
14
.
2
15
.
三、解答题
16
.
解
(
1
)因为
,
所以
,
,
(
3
分)
设
与
的夹角为
,
所以
(
5
分)
(
2
)因为
,
(
7
分)
又
,
所以
,解得
(
10
分)
(
3
)
由已知
,
,
(
12
分)
因为
A
、
B
、
C
三点共线
,
所以
.
(
15
分)
17
.
解
(
1
)在
中,由正弦定理
,
,
,
可得
,
因为
,所以
,即
,
(
3
分)
解得
.
(
4
分)
(
2
)在
中,由余弦定理
,
得
,解得
或
.
(
7
分)
由已知
互不相等,所以
.
所以
的周长为
(
9
分)
(
3
)因为
,所以
,
(
10
分)
所以
,
,
(
12
分)
所以
(
15
分)
18
.
解
(
1
)
(
4
分)
(
2
)证明:设
,接
,
在正方体
中,四边形
是正方形,
是
中点,
是
的中点,
,
(
7
分)
平面
平面
平面
;
(
9
分)
(
3
)证明:
为
的中点,
为
的中点,
,
四边形
为平行四边形,
,
(
11
分)
又
平面
平面
平面
,
(
13
分)
由(
1
)知
平面
平面
平面
,
平面
平面
.
(
15
分)
19
.
解
(
1
)因为
,
所以
,
(
3
分)
整理得
,
由正弦定理得
,
(
5
分)
由余弦定理得
,
因为
,所以
.
(
7
分)
(
2
)
(
11
分)
在锐角
中,因为
,所以
(
12
分)
所以
,所以
,
所以
,
所以
的取值范围为
.
(
15
2022-2023学年天津市部分重点高中高一下学期期中考试数学试卷(原卷全解析版)